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Random-walk renormalisation and the spectral dimension of 
harmonic models on a class of hierarchical lattice 
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Department of Chemistry, Royal Holloway College, Egham Hill, Egham, Surrey 
TW20 OEX, UK 

Received 17 September 1984, in final form 8 May 1985 

Abstract. Random-walk recursion relations are developed on a simple example of hierar- 
chical lattice and are found to be the generating functions for first-passage walks. With 
exact renormalisation of a general harmonic model the spectral dimension, F, for the bond 
hierarchy class is shown to be 

F = 2  ln(g)/[ln(g)+ln(A,)l, 

where g and A ,  are respectively the aggregation number and resistance eigenvalue. The 
behaviour of F across families of hierarchies is discussed. It is noted that the renormalisa- 
tion group has limitations in its abilities to give results for the above models on hierarchies 
and that F so found may not maintain on hierarchies its usual significance for random-walk 
statistics. 

1. Introduction 

On fractal lattices several authors (Dhar 1977, Rammal and Toulouse 1983, Alexander 
and Orbach 1982) have introduced the spectral dimension denoted F in this work. 
This parameter enters harmonic and diffusive physics: the low-frequency density of 
states of harmonic models obeys the homogeneity p ( w )  = A'-$(Aw), generalising the 
Euclidean power law p ( 0 ) a  w d - ' .  

Hierarchical lattices are a vast class of lattices possessing tractable renormalisation 
transformations. Bond hierarchies are studied in this work. Some discussion of the 
structure of bond hierarchies and corresponding terminology is given in S 2. In § 3 
renormalisation of random-walk recursion relations on the Wheatstone-bridge 
hierarchy is presented by way of a worked example; a fixed point eigenvalue is 
associated with first-passage times. Section 4 shows the equivalence of the random-walk 
renormalisation to that of harmonic vibrations with masses scaled with site coordina- 
tions. Straightforward matrix algebra on a general form leads to the result stated in 
the abstract. Section 5 briefly discusses limitations of renormalisation results on 
hierarchies and gives a critique of the relevance of F as found in 5 4 to random-walk 
statistics. 

2. Comments on hierarchical lattice structure 

Griffiths and Kaufman (1982) give a specific definition of hierarchical lattices. Many 
varieties of such lattices exist; the class of bond hierarchies, as previously described 
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by Melrose (1983b, 1985), are studied here. The terminology and definitions of lattice 
metric, intrinsic dimension D and connectivity contained in the authors earlier works 
are assumed here; D = ln(g)/ln( b) ,  where g is the number of bonds on the basic cell 
and b is the number of bonds on the shortest path between the nodes of the basic cell 
(the n = 1 unit). 

A parameter introduced here is w, the coordination of the nodes on the basic cell. 
In general, hierarchies can possess an infinite range of site coordinations. An nth unit 
has two nodes of coordination w n  and other sites with coordinations in the range ki 
to kiw"-l ,  where the ki are independent of n and are the set of coordinations on the 
basic cell. Sites of coordination kiwm will be referred to as mth-order sites. As one 
constructs hierarchies one observes the following features. If b > 1 sites with higher 
and higher coordination are further and further apart. An mth-order site has, for 
j < m,jth-order sites at a distance b' from itself. The structure surrounding an mth-order 
site is the same for all mth-order sites out to a distance b": it is surrounded by kix mth 
units. At and beyond a distance b" the structure surrounding any particular mth-order 
site depends on the location of this site with respect to ( p >  m)-order sites; it is clear 
that coordination does not exhaust division of sites into their infinite variety of 
equivalence classes (Griffiths and Kaufman 1982). The relevance of these structural 
features to random-walk statistics is discussed in 0 6 .  

Figure 1. The fourth unit in the generation of the A = 2, M = 2 Migdal-Kadanoff hierarchy; 
the basic cell is that of ( la )  in figure 3 in the case stated. 

3. Renormalisation of random walks 

The generating function for random-walk site probabilities (Montroll and Weiss 1965) 
is written 

where Pa( p, N )  is the probability of arrival at a site /3 at step N having started the 
walk at a site LY and Z h  is an ensemble weight for walks of N steps. Renormalisation 
is carried out using the recurrence relation obeyed by G's at neighbouring sites; an 
example will be worked through below. 



Spectral dimension and walks on hierarchies 3409 

Example. The Wheatstone-bridge hierarchy 
Consider as origin of the walk some site a with coordination c, ; this is surrounded 
by c,/2 basic cells as shown in figure 2. The following relation is found to hold 
between the Pa( p, N ) :  

c / 2  

where ai, and ai2 denote the two neighbours of a in the ith of the c,/2 basic cells 
surrounding a (see figure 2 ) ;  the probability of stepping along any bond from a given 
site of coordination c is l / c .  Using ( 1 )  one finds, with Po( p, 0) = a,,, the recurrence 
relation 

and similarly 

(4) 
Z Z Z 

Go(+, Z )  -- G,( a, 2)  -- G,( ai2, Z )  -- G,( pi, Z )  = 0 
C 3 6 

where p i  denotes the second neighbours of a in cell i ;  these are found to have 
coordination 6. Renormalisation, eliminating the zeroth-order sites, carried through 
by solving (4) for the G,(ai; ,  2 )  and substitution into (3) gives 

C J 2  

[ 1 -Z2 / (3  -Z)]G,(a ,  Z )  - ; [ Z 2 / ( 3  - Z ) ]  G,( pi, Z )  = 1 .  ( 5 )  
1 = l  

i = k  

Figure 2. General origin on a W B H .  

The factor [ l  -Z2 / (3  - Z ) ]  may be divided through to bring back the original 
model. The renormalisation is completed by relabelling the sites: all sites have dropped 
in coordination by 4 and equation ( 5 )  is rearranged to give 

Z ’ C J 4  

G,.(a‘, Z’)  -- 3 i = ,  1 ( G a , ( a ’ i l ,  Z’)+ G,,(a’i2, Z ’ ) )  = [ l  -Z2 / (3  -Z)] - ’ ,  ( 6 )  

where 

2’ = z’/ ( 3  - z - Z’) (7) 
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and a' denotes that a is now of coordination c , / 2 .  Z' is the renormalised walk weight 
and the Gpi have been relabelled as the nearest neighbours of a ' .  Note G, and G,, 
are different function being defined for inequivalent sites. 

Hoye and  Napiorkowski (1980) and Napiorkowski (1983) have considered renor- 
malisation of random walks in one dimension by making block transformations between 
walk graphs. Expansion of (7)  and graphical interpretation of successive terms reveals 
that (7 )  is the generating function for first-passage walks from any origin to any one 
of the nodes of the surrounding basic cells, the pi of figure 2 .  Similarly the factor on 
the right of (6) is the generating function for walks which return to the origin without 
passing through any of the pi. For a pth-order origin, iteration of the recursion relation 
and the product of successive factors on the right of (6) give for the mth iteration the 
generating functions respectively for first-passage walks out to any one of the nodes 
of the surrounding m units and  for walks that return to the origin without passing 
through any m unit nodes, where m S p ; a discussion of the bound is given in § 6. 

For a general bond hierarchy let ZL stand for the mth iterate of the recursion relation 

Following the example above it is assumed that in general QmL is the probability of 
first passage out to any of the nodes of the surrounding mth units, where the origin 
is of pth order with p >  m. The recursion relations have an  unstable fixed point at 
Zh = l t l m  (see § 4). Expectations of the generating functions ZL are taken at this 
fixed point (Feller 1950). The expectation of the number of steps required to make 
first passage to mth unit nodes is given by 

(nstep);=A,", (9) 

where A Z  = d Z ; / d Z  1 Z = 1 is the fixed point eigenvalue. The walk exponent v is defined 
by 

( R ( N ) )  = NU, (10) 

where ( R ( N ) )  is the average distance from the origin at step N. Assuming that on 
average first passage out to a distance R occurs at step R"" (Angles d'Auriac et a1 
1983) one has 

(,"')'I" = i l l )  

z, = ln(b)/ln(AZ). (12) 

and hence 

Similar arguments have been given by Given and Mandelbrot (1983). 

4. Harmonic models and a general result for F 

The spectral dimension can be calculated by the renormalisation of the Gaussian model 
partition function (Dhar 1977, Melrose 1983a) or that of harmonic vibrations (Rammal 
and Toulouse 1983, Rammal 1984). To maintain model invariance under renormalisa- 
tion it is necessary that site terms in these models (masses or  external fields) be applied 
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to sites in proportion to their coordinations (Yeomans and Fisher 1981, Melrose 1983b 
and references therein). Harmonic equations of motion for frequency w are written 

where wo = ( k /  t n ) l I 2  with k the spring constant and a site i of coordination c, is given 
a mass c,m. (On discrete spin models this site term scaling leads to an infinite 
susceptibility to external fields at high temperatures (Kaufman and Griffiths 1983, 
McKay and Berker 1984) ; even if one starts with constant site terms the renormalisation 
introduces site terms proportional to the coordination.) 

As was seen in 5 3 random-walk generating functions on hierarchies obey recurrence 
relations of the form 

(14) 
z 

G,- C -G,=S,o. 
,"l c, 

Substituting U, = G,/ c, one sees that the LHS'S of (13) and (14) are equivalent if one sets 

z-' = (w/wo)2+1. (15) 

The 6 function on the RHS of (14) plays no role in the derivation of recursion relations 
and the two models have recursion relations related by the substitution (15). (Note 
the site term scaling of the harmonic models is now seen to be necessary to achieve 
the above equivalence with the random-walk model in whose equations the coordination 
appears quite naturally.) The notation a = 2-' = ( U /  wo)2 + 1 is introduced and used 
below. 

For the purposes of unity consider renormalisation of the general equations 

M U  = 0 ,  (16) 

where U is a vector of site amplitudes U, and M is the adjacency matrix defined by 

M,,  = c,a M,, = -U 0' (17) 

where u , ~  = l (0)  if sites i and j are (are not) neighbours. Consider a general symmetric 
bond hierarchy (Melrose 1985). For a particular site i the equations given by row i 
of (16) can be divided into c,/w separate equations for each neighbouring cell. 
Renormalisation can be carried out independently on each such set of cell equations, 
that is (16) on a basic cell. Let n stand for the number of sites on the basic cell. The 
nodes are assigned as the first and second elements of U and M. Renormalisation is 
carried through by solving (16) for the internal sites U,. . . U, in terms of the nodes 
U ,  and U, and then substitution of these solutions into the equations for U ,  and U,, 
the first two rows of M. The cell is reduced to a single bond between the nodes. Let 
B be the resulting ( 2  ~ 2 )  matrix satisfying: 

One finds 

B = (M3 n,3 n)-(Ml2,3 ~ ) ( M I z , I ~ ) - ~ ( M I ~ , ~  n)' (19) 
where ( M > l  Z p , J l  Jq ) denotes the matrix formed from M by elimination of rows i, . . . i, 
and columns j, . . . j ,  and (A)'  denotes the transpose of A. Now (18) are the equations 
for a single bond on the renormalised lattice. To complete the renormalisation one 
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rescales the U’s such that the off-diagonal elements of (18) are -1 as in (17) leading 
to the recursion relation for a :  

a ’ = f i  ( a )/h( a 1, (20) 

with a = 1 always a fixed point (see the appendix). 

p ( w )  = A ’ - F p ( A w )  (Rammal and Toulouse 1983) and one finds 
As w + O  the density of states of harmonic vibrations (per w per bond) obeys 

F = 2 ln(g)/ln(Aa), (21) 

where Aa = da’ /da(a  = l ) ,  A, = A Z  by (15). Now when a = 1 equations (16) are just 
Kirchoff s’ laws with the bonds as unit resistors and renormalisation gives the effective 
resistance, A,, between the nodes of a basic cell, A;’ =fl(l) =f2(1); Stinchcombe (1979) 
noted this equivalence in the context of the Gaussian model. It is shown in the appendix 
that 

A, = ghr (22) 

where g is the aggregation number (equation (19) may be written in terms of matrix 
determinants which on expansion of 6, where a = 1 + 8, and use of (17) on the resulting 
expressions leads to the result (22)). From (22) one has the result stated in the abstract 

= 2 ln(g )/ [ln(g) + ln(Ar>l* (23) 

Given and Mandelbrot (1983) find that (22) holds on a number of hierarchical fractal 
lattices. (Trivially the hierarchies here do obtain scaling behaviour immediately so 
difficulties discussed in Given and Mandelbrot (1984) do not arise). Hilfer and Blumen 
(1984) have used similar matrix algebra to that above on the Sierpinski gasket. 

5. Variation of F on examples 

Table 1 gives values of F for the cells of figure 3 as studied previously by Melrose 
(1983b, 1985); notation follows these works. Hierarchical lattices are by definition 
finitely ramified with respect to sites. Hierarchical lattices which are also fractal with 
equality of lattice and Euclidean metric are also finitely ramified with respect to bonds 
and hence have A , >  1 and F < 2  by (23). However, the hierarchies of table 1 are 
infinitely ramified with respect to bonds and can have F >  2. On a d-dimensional 
regular lattice the resistance, A,, between two d - 1 faces a distance L apart obeys 
A , a  L2-d. On some cells (e.g. la ,  2a, 2b, 3a, 3b, 3d-4b) termed uniform one finds the 

Table 1. Lattice parameters and E 

2c 2b 2e 3c 2a 3d 3e 3a 3b 2d 4a 4b 

g 12 8 16 12 5 15 20 9 12 12 14 28 
9 2 2  2 3 2  3 4 3  4 3 4 8 
b 4 2  4 3 2  3 3 2  2 2 2 2 
A ,  312 3 / 2  3 /2  516 1 1 314 312 112 8/10 112 114 
Q 0.5 0.63 0.5 1 1 1 1.26 1.58 2 1.58 2 3 
F 1.72 1.67 1.74 2.16 2 2 2.21 1.69 2.77 2.20 2.71 3.42 
D 1.79 1.89 2 2.26 2.32 2.46 2.73 3.17 3.58 3.58 3.81 4.81 
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110 12al 12b l  12d)  I Z e i  

I 3 0 1  l 3 b l  1 3 c )  13d 1 13e)  I 4 0  I ( 4 b l  

Figure 3. Some basic cells; the parametrised cell ( l a )  defines the Migdal-Kadanoff family 
of hierarchies. 

natural generalisation of this for the resistance between two nodes of an nth unit: 
A , ~ r ( b " ) ' - ~ ,  where the connectivity Q = ln(q)/ln( b )  with q the minimum cut on the 
basic cell (Melrose 1983b). The role of nodes as the external surfaces of units (Griffiths 
and Kaufman 1982) is exposed by this. For uniform hierarchies, (23) gives F =  
2D/(  D + 1 - Q) and on the Migdal-Kadanoff hierarchies ( l a )  with D = 1 + Q, F = D 
as reported in Velrose (1983a) ; on uniform hierarchies solving the resistance scaling 
problem reduces to that of ( l a )  with M = q and A = b after one has removed all bonds 
between equipotentials. 

Observe from the table that F > Q + 1 for low D whilst F < Q + 1 at high D. Melrose 
(1983~)  discusses duality on planar hierarchies; one finds that self-dual hierarchies 
have F = 2. On some families of hierarchies F tends towards finite limits as D + CO 

with large members: on the hyperpyramids cells (2a, 3a, 4a, etc) F + 4 as D + 03, whilst 
on the hypercubes (cells 2a, 3b, 4b, etc) F +  2 as D+ 03. From (23) it is seen that on 
these families AZ diverges with D and v + O  quite unlike walks on regular lattices; 
simply with the growing coordination of the internal sites of these cells it takes a 
diverging number of steps to cross the cells. 

The author has not observed any stronger correlation between king model 
exponents and F over those already reported for D and Q in Melrose (1983b). 

6. Random-walk renormalisation revisited 

As described in 0 2 on bond hierarchies with an infinite range of coordinations at and 
beyond a distance b" the structure surrounding any particular mth-order site depends 
on the location of this site with respect to ( p >  m)-order sites; that is there is a 
'structural disorder' built into such hierarchies on a scale depending on the order of 
the origin. The renormalisation described in § 3 can at most give the generating function 
for walks that return to the origin without going beyond b"' (the renormalisation 
naturally terminates with the decimation of an mth-order origin at the ( m  - 1)th 
iteration). Such limitations of renormalisations calculations of functions on hierarchies 
have been noted previously for the single-site Greens' function (Langlois et al 1983). 
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Rammal and Toulouse (1983) proposed that on fractal lattices random-walk statis- 
tics were related to F for F < 2. However, a basic step in their arguments does not 
extend to the hierarchies with an infinite range of coordinations. As pointed out in 
Melrose (1983b) the definition of intrinsic dimension therein does not characterise the 
growth of the lattice around any arbitrary site ( D  just characterises how the number 
of bonds on an n t h  unit depends on b").  The number of sites available to a random 
walk of N steps, A( N),  does not obey A ( N ) K  ND" (from (21), 2Dv = F )  and hence 
F as found in 5 4 need not be related to statistics for returns to the origin and distinct 
sites visited. Indeed, the Migdal-Kadanoff hierarchies ( l a )  provide a counter example: 
generating functions found by the renormalisation are those of the Id lattice. Inspection 
of figure 1 reveals that the statistics for returns to an mth-order origin within b" are 
simply those of returns within b" on a one-dimensional lattice. 

In a future publication the author will report Monte Carlo results for random-walk 
statistics on hierarchies. 

Recently Melrose (1985) has reported results for the self-avoiding walk eigenvalue 
A,  analogous to hZ here. On high-dimensional hierarchies no crossover of SAW statistics' 
to random-walk statistics is observed: for the Migdal-Kadanoff hierarchies both A, 
and AZ stick to the one-dimensional lattice values for all D. The 'linear' nature of the 
M K H  is clearly evident in figure 1. 

7. Conclusions 

Random-walk recursion relations for bond hierarchies were shown to be equivalent 
to those of harmonic models with masses scaled with the coordinations. A general 
result was proved for the spectral dimension, F, of harmonic models on bond hierar- 
chies. Clear doubts as'to the relevance of F to random-walk statistics on hierarchies 
were expressed. 

Appendix. Proof that A,, =gAr 

The elements of matrix B given by (19) can be rearranged and expressed as matrix 
determinants in a generalisation of the Kirchoffs' solution for the resistance between 
two sites of an arbitrary network (Wu 1982, Stephen 1976 and references therein). 
One finds 

f i ( a )  = I ~ 2 , 2 1 / I ~ i 2 , 1 * l  f2(a) = - l ~ 2 , l l / l ~ l 2 , i 2 l  ('41) 

a '=  - I M z , 2 l l l M 2 , l l .  (A2) 

where f l  and f2 are defined by (18) and the notation M,,  , p , J l  J q  is explained in the 
text. From (20) 

When a = 1 all the cofactors of M as defined in (19) and (20) are equal; hence 
/M2,21 = -IM2,1/ and a = 1 is a fixed point of (A2). Now set a = 1 + S and expand the 
determinants in (A2) in the diagonal perturbations c,6. Let M stand for the matrix M 
in the case a = 1, the pure resistance problem with unit resistors. One finds 

IM2,21 = IM2,*1 + CJ cJIM2],2J I +o(62), 
I # >  
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and from (A2) 

a ’ = 1 + c1 I n;r, 2.1 21 / I a , 2 1  + c, c, ( I %,,2, I + I M2,,2, I I /  I M 2 , 2 l +  O( 8 2). (A3 1 
,+1,2 

Now &? has the property that Z, M,, = Z, MI, = 0 Vi ,  j .  By repeated use of this property 
in substitution and the identity that ID1 =IAI+IBI with A and B differing from D in 
just one row (or column), say i, such that D,, = A ,  + B,, it is found that 

t l G 2 . 1 2 l  = l~1 , .1 , l+ l~1 , , * , l  V j. (A4) 

Substitution of (A4) in (A3) and noting that with c1 = c2, c1 +f 
of bonds on the cell, one has 

c, = g, the number 

a ’ =  l+8gh,+0(82) (A51 

where A,= IA?12,,21/lM2,21 is the resistance scaling eigenvalue R‘= h,R and is Kirchoff’s 
solution. 
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